Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1303: 342525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609266

RESUMO

Mercury ions can cause serious damage to the ecological environment, and it is necessary to develop reliable and elegant mercury ion sensors. In this protocol, a label-free photothermal/electrochemical dual-mode strategy for Hg2+ is proposed based on delaminated Ti3C2 MXene nanosheets (DL-Ti3C2 MXene). Hg2+ exists in water in the form of HgCl2, Hg(OH)2, and HgClOH, and the electron-rich elements O and Cl can specifically bind to the positively charged DL-Ti3C2 MXene at the edge, and further oxidation-reduction reaction occurs to obtain TiO2/C and Hg2Cl2. In view of the reduction activity and the performance of photothermal conversion of DL-Ti3C2 MXene itself, the electrochemical and photothermal responses decrease with the increase of the logarithm of Hg2+ concentration. The corresponding linear ranges are 50 pmol L-1-500 nmol L-1 and 1 nmol L-1-50 µmol L-1, and their detection limits calculated at 3 S/N are 17.2 pmol L-1 and 0.43 nmol L-1, respectively. DL-Ti3C2 MXene has the characteristics of a wide range of raw materials, low cost, and easy preparation. In addition, the design takes full advantage of the properties of the material itself, avoids the complex assembly and detection process of conventional sensors, and enables high selectivity and sensitivity for mercury detection. In particular, the dual-mode sensing endows self-confirmation of mercury ion detection results, thereby improving the reliability of the sensor.

2.
Cancers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831642

RESUMO

Bone marrow (BM) is the most common site of neuroblastoma (NB) metastasis, and its involvement represents poor patient prognosis. In accordance with the "seed and soil" theory of tumor metastasis, BM provides a favorable environment for NB metastasis while bone marrow mesenchymal stem cells (BMSCs) have been recognized as a central part of tumor stroma formation. Yet, there is currently no effective method for intervening these BMSCs. We found that BMSCs affected by NB (NB-BMSCs) could significantly promote NB growth and migration. Additionally, tumor cell-endowed BMSCs showed stronger resistance to several chemotherapeutic agents. Surprisingly, NB-BMSCs were more sensitive to ferroptosis than normal BMSCs. NB-BMSCs had lower levels of intracellular free iron while synthesizing more iron-sulfur clusters and heme. Moreover, the Xc-/glutathione/glutathione peroxidase 4 (Xc-/GSH/GPX4) pathway of the anti-ferroptosis system was significantly downregulated. Accordingly, ferroptosis inducers erastin and RAS-selective lethal 3 (RSL3) could significantly kill NB-BMSCs with limited effects on normal BMSCs. BMSCs from NB patients with BM metastasis also showed poor anti-ferroptosis ability compared with those from NB patients without BM metastasis. In vivo studies suggested that co-injection of mice with BMSCs and NB cells could significantly promote the growth of tumor tissues compared with injecting NB cells alone. However, treatment with erastin or RSL3 resulted in the opposite effect to some extent. Our results revealed that NB-BMSCs were vulnerable to ferroptosis from downregulation of the Xc-/GSH/GPX4 pathway. Ferroptosis inducers could effectively kill NB-BMSCs, but not normal BMSCs. This study provides possible new ideas for the treatment of tumor-associated BMSCs in NB patients.

3.
Anal Chem ; 93(31): 11043-11051, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34319082

RESUMO

DNA circuits as one of the dynamic nanostructures can be rationally designed and show amazing geometrical complexity and nanoscale accuracy, which are becoming increasingly attractive for DNA entropy-driven amplifier design. Herein, a novel and elegant exciton-plasmon interaction (EPI)-based photoelectrochemical (PEC) biosensor was developed with the assistance of a programmable entropy-driven DNA amplifier and superparamagnetic nanostructures. Low-abundance miRNA-let-7a as a model can efficiently initiate the operation of the entropy-driven DNA amplifier, and the released output DNAs can open the partially hybridized double-stranded DNA anchored on Fe3O4@SiO2 particles. The liberated Au nanoparticles (NPs)-cDNA can completely hybridize with CdSe/ZnS quantum dots (QDs)-cDNA-1 and result in proportionally decreased photocurrent of CdSe/ZnS QDs-cDNA-1. This unique entropy-driven amplification strategy is beneficial for reducing the reversibility of each step reaction, enables the base sequence invariant and the reaction efficiency improvement, and exhibits high thermal stability and specificity as well as flexible design. These features grant the PEC biosensor with ultrasensitivity and high selectivity. Also, instead of solid-liquid interface assembly for conventional EPI-based PEC biosensors, herein, DNA hybridization in the solution phase enables the improved hybridization efficiency and sensitivity. In addition, superparamagnetic Fe3O4@SiO2 particles further ensure the enhancement of the selectivity and reliability of the as-designed PEC biosensor. Particularly, this single-step electrode modification procedure evidently improves the electrode fabrication efficiency, reproducibility, and stability.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Nanopartículas Metálicas , Pontos Quânticos , DNA , Técnicas Eletroquímicas , Ouro , Reprodutibilidade dos Testes , Dióxido de Silício
4.
Soft Matter ; 15(37): 7404-7411, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31465077

RESUMO

Herein, a PVA (polyvinyl alcohol)-based multi-responsive hydrogel was prepared by introducing the dynamic and reversible supramolecular complexation between polyvinyl alcohol acetoacetate (PVAA) and Fe3+ ions within 20 s at room temperature. PVAA-Fe hydrogels could be achieved by the simple mixing process of a PVAA aqueous solution with FeCl3 aqueous solution. The soluble PVAA was synthesized by the reaction of PVA with tert-butyl acetoacetate (t-BAA) via transesterification in dimethyl sulfoxide (DMSO). The chemical structure of PVAA was systematically characterized by FT-IR and 1H NMR spectroscopy. The resulting hydrogel showed excellent self-healing behavior without other external stimuli. It was also demonstrated that the PVAA-Fe hydrogel exhibited multi-responsive properties, such as responsiveness to pH, redox, light irradiation and temperature. In addition, the presence of Fe3+ ions and Cl- ions in the gel imparted the PVAA-Fe hydrogel with favorable conductivity. Therefore, the strategy for the facile preparation of the hydrogel in this work could provide a benign and versatile method for achieving multi-functional soft materials for various applications such as smart devices, logic gates, and sensors.

5.
Carbohydr Polym ; 138: 106-13, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26794743

RESUMO

ZnO/carboxymethyl chitosan (ZnO/CMCS) composite was prepared and confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, Scanning electron microscope (SEM), Transmission electron microscope (TEM). The combination of plasma pretreatment and ZnO/CMCS composite finishing was applied to provide durable UV resistance and antibacterial activity for cotton fabric. Cotton fabric was pretreated by cold oxygen plasma and the ZnO/CMCS composite finishing was carried out by pad-dry-cure. Cotton fabric was characterized by SEM, FTIR, UV resistance, antibacterial activity and Thermogravimetry (TG). SEM and FTIR analysis demonstrated the presence of ZnO/CMCS composite on cotton fabric and the increasing loading efficiency of ZnO/CMCS composite owing to plasma treatment. UV resistance and antibacterial activity of the finished cotton fabric were greatly improved, which increased with the increasing concentration of ZnO/CMCS composite. TG analysis indicated that the combined finishing of cotton fabric with plasma pretreatment and ZnO/CMCS composite could improve its thermal property. The finished cotton fabric exhibited an excellent laundering durability in UV resistance and antibacterial activity.


Assuntos
Antibacterianos/química , Celulose/química , Quitosana/análogos & derivados , Raios Ultravioleta , Óxido de Zinco/química , Antibacterianos/farmacologia , Quitosana/química , Klebsiella pneumoniae/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria , Difração de Raios X
6.
Carbohydr Polym ; 113: 344-52, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256493

RESUMO

Carboxymethyl chitosan (CMCS) was prepared with a view to develop a multifunctional finish on saponified polyethylene terephthalate (PET) fabric. CMCS was synthesized by chemical reaction with chloroacetic acid, and its chemical structure was characterized by Fourier Transform Infrared Spectrum (FTIR) and nuclear magnetic resonance (NMR). CMCS was grafted on saponified PET fabric using 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) and polyethylenimine (PEI)/glutaraldehyde (GA) as cross-linking agent. FTIR, scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analyses confirmed CMCS grafting on saponified PET fabric surface. TGA indicated saponification and CMCS grafting did not affect thermal property of PET fabric. The CMCS grafting greatly improved wettability, antistatic property of saponified PET fabric without harmful effect on their physico-mechanical properties.


Assuntos
Quitosana/análogos & derivados , Poliésteres/síntese química , Quitosana/síntese química , Espectroscopia de Ressonância Magnética/métodos , Teste de Materiais/métodos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...